Geometry 2023 Exam, Tuesday 11 April, 08:30-10:30

- Below you can find the exam questions. There are 4 questions summing up to 85 points, you get extra 15 points for a clear writing of solutions.
- You may consult two A4 pages handwritten or typeset by you for formulas, results, etc treated in this course Other materials are not allowed
- When handing in your solutions, please do not forget to write your name and student number on the envelope Good luck!

QUESTIONS

1 5+15 = 20 pts Consider the following parametric equation of a tractrix

$$\gamma = \left(t - \tanh t, \frac{1}{\cosh t}\right) \colon \mathbb{R} \to \mathbb{R}^2$$

- i) Determine whether $\gamma = \gamma(t)$ is an everywhere regular curve,
- 11) Compute the evolute of γ and state its relation to Huygens's principle
- 2. 10+10+15 = 35 pts Consider the torus of revolution T^2 in \mathbb{R}^3 given by parametric equations

$$\begin{aligned} x &= (2 + \cos \psi) \cos \varphi, \\ y &= (2 + \cos \psi) \sin \varphi, \\ z &= \sin \psi, \quad (\varphi, \psi) \in [0, 2\pi]^2. \end{aligned}$$

- 1) Prove that the meridians $\varphi = \text{const}$ and the two parallels $\psi = 0, \pi$ are geodesics of T^2
- 11) Prove that there exists a geodesic triangle on the torus T^2 for which the angle sum is a) strictly greater than π and b) strictly less than π
- in) Using part 1), subdivide T^2 into 4 geodesic triangles Deduce that $\frac{1}{2\pi} \int_{T^2} K dS = 0$, where $K \colon T^2 \to \mathbb{R}$ is the Gaussian curvature of T^2 and dS is the area element

Hint · local Gauss-Bonnet theorem. You may use without proof that every pair of points on T^2 is connected by a geodesic.

see next page

- 3 8+7 = 15pts Consider the affine 3-space \mathbb{Q}^3 , where \mathbb{Q} is the field of rational numbers. Let A, B, C, and A', B', C' be 6 distinct points in \mathbb{Q}^3 . Assume that the line AB is parallel to A'B', BC is parallel to B'C', and AC is parallel to A'C' Prove that
 - 1) If two of the lines AA', BB', and CC' intersect, then these three lines are concurrent (i.e., intersect at a single point),
 - 1) If two of the lines AA', BB', and CC' are parallel, then all three lines are parallel
- 4 15pts Let (e_1, e_2) be a basis of \mathbb{C}^2 and $P(\mathbb{C}^2)$ be realised as the projective completion of the affine line $\{ze_1 + e_2 \mid z \in \mathbb{C}\}$ in \mathbb{C}^2 Similarly, let (e^1, e^2) be the dual basis of $(\mathbb{C}^2)^*$ and $P((\mathbb{C}^2)^*)$ be the projective completion of the affine line $\{ve^1 + e^2 \mid v \in \mathbb{C}\}$. Let A. $\mathbb{C}^2 \to \mathbb{C}^2$ be a linear isomorphism and A^* $(\mathbb{C}^2)^* \to (\mathbb{C}^2)^*$ be its dual. Let f and f^* be the corresponding projective transformations of $P(\mathbb{C}^2)$ and $P((\mathbb{C}^2)^*)$. Compute f^* in the coordinate v when f = z + 1 is a translation

Hint Recall that in matrix form, A^* is given by the transpose of A.

End of exam