Geometry 2023

Exam, Tuesday 11 April, 08:30-10:30

- Below you can find the exam questions. There are 4 questıons summing up to 85 ponts, you get extra 15 points for a clear writung of solutions.
- You may consult two A4 pages handwitten or typeset by you for formulas, results, etc treated in this course Other materials are not allowed
- When handmg in your solutions, please do not forget to wnite you name and student number on the envelope Good luck'

QUESTIONS

$15+15=20 \mathrm{pts}$ Consider the following parametric equation of a tractrix

$$
\gamma=\left(t-\tanh t, \frac{1}{\cosh t}\right) \cdot \mathbb{R} \rightarrow \mathbb{R}^{2}
$$

i) Determine whether $\gamma=\gamma(t)$ is an everywhere regular curve,
11) Compute the evolute of γ and state its relation to Huygens's principle
2. $10+10+15=35 \mathrm{pts}$ Considel the torus of 1 evolution T^{2} in \mathbb{R}^{3} given by parametric equations

$$
\begin{aligned}
& x=(2+\cos \psi) \cos \varphi \\
& y=(2+\cos \psi) \sin \varphi \\
& z=\sin \psi, \quad(\varphi, \psi) \in[0,2 \pi]^{2} .
\end{aligned}
$$

1) Prove that the meridians $\varphi=$ const and the two parallels $\psi=0, \pi$ are geodesics of T^{2}
2) Prove that there exists a geodesic triangle on the ton T^{2} for which the angle sum is a) structly greater than π and b) stuctly less than π
in) Using part 1), subdivide T^{2} into 4 geodesic triangles Deduce that $\frac{1}{2 \pi} \int_{T^{2}} K \mathrm{~d} S=0$, where $K . T^{2} \rightarrow \mathbb{R}$ is the Gaussian curvature of T^{2} and $\mathrm{d} S$ is the area element

Hint. local Gauss-Bonnet theorem. You may use without proof that every parr of points on T^{2} is comnected by a geodesic.
$38+7=15 \mathrm{pts}$ Consıder the affine 3 -space \mathbb{Q}^{3}, where \mathbb{Q} is the field of 1 ational numbers. Let A, B, C, and $A^{\prime}, B^{\prime}, C^{\prime}$ be 6 distinct points in \mathbb{Q}^{3}. Assume that the line $A B$ is parallel to $A^{\prime} B^{\prime}, B C$ is parallel to $B^{\prime} C^{\prime}$, and $A C$ is parallel to $A^{\prime} C^{\prime}$ Prove that

1) If two of the lines $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ intersect, then these three lines are concunent (1 e, intersect at a single point),
2) If two of the lines $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ are parallel, then all thee lines are parallel
$4 \boxed{15 \mathrm{pts}}$ Let $\left(e_{1}, e_{2}\right)$ be a basis of \mathbb{C}^{2} and $P\left(\mathbb{C}^{2}\right)$ be lealised as the projective completion of the affine line $\left\{z e_{1}+e_{2} \mid z \in \mathbb{C}\right\}$ in \mathbb{C}^{2} Similarly, let $\left(e^{1}, e^{2}\right)$ be the dual basis of $\left(\mathbb{C}^{2}\right)^{*}$ and $P\left(\left(\mathbb{C}^{2}\right)^{*}\right)$ be the projective completıon of the affine line $\left\{v e^{1}+e^{2} \mid v \in \mathbb{C}\right\}$. Let $A . \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a linear isomor phism and $A^{\wedge}\left(\mathbb{C}^{2}\right)^{\lambda} \rightarrow\left(\mathbb{C}^{2}\right)^{\wedge}$ be tts dual Let f and f^{2} be the corresponding projective tiansformations of $P\left(\mathbb{C}^{2}\right)$ and $P\left(\left(\mathbb{C}^{2}\right)^{*}\right)$ Compute f^{*} m the coordmate v when $f=z+1$ is a tianslation

Hunt Recall that in matiox form, A^{*} is given by the transpose of A.

End of exam

